The Sun and the Solar System are believed to have formed about 4.57 billion years ago, more than 9 billion years after the universe came into existence. As with any other star, the formation of the Sun started with the development of an accretion disk from a nebula. The nebula that would form the Solar System contained all of the 92 naturally occurring elements, because it had incorporated remnants of preceding generations of stars. In the swirling accretion disk, matter was therefore not only present in the form of gas, but also as ice or dust. Because these are the raw materials required to form planets, such an accretion disk is also known as a protoplanetary disk.
Over time, the ball of gas at the center of the swirling protoplanetary disk evolved into a proto-Sun, while the remaining materials developed into a series of concentric rings. Because protoplanetary disks are hotter towards their center, particles of refractory materials (dust) concentrated in the inner rings of the disk whereas particles of volatile materials (ice) concentrated in the outer rings of the disk. The materials of surrounding rings subsequently started to coalesce and form progressively larger objects. Following continuous collisions, some of these objects grew into planetesimals, solid chunks of matter that were so large that they exerted enough gravity to attract other surrounding objects. Eventually, the planetesimals that succeeded in attracting the most matter grew into protoplanets. Once these protoplanets had incorporated essentially all of the matter that was present in their orbits, they would become true planets.
The characteristics of the planets that formed depended on their distance from the proto-Sun. Small terrestrial planets (Mercury, Venus, Earth and Mars) formed in the inner rings of the young Solar System, which consisted mostly of dust, while large gaseous planets (Jupiter, Saturn, Uranus and Neptune) formed in the outer rings, which consisted primarily of gas and ice. Because of their massive size, the outer planets attracted so much additional gas and ice that they evolved into gas giants. Towards the end of planetary formation, the proto-Sun became so hot that it ignited and transformed into the true Sun. This generated a stellar wind – or solar wind – that blew away any remaining gases from the inner region of the Solar System.
Altogether, this model for the formation and evolution of the Solar System is referred to as the nebular hypothesis. It is the most widely accepted model because it is able to explain several key characteristics of the Solar System, including why all planets orbit the Sun in the same direction and why their orbits all occur in the same plane. These observations are all consistent with the formation of stars and planets from gas, ice and dust in an accretion disk rotating around a central mass.
Book reference: Marshak, S. (2007). Earth: Portrait of a Planet: Third International Student Edition. WW Norton & Company.
Image: Artists impression of the Solar System showing the Sun, the eight planets and several other celestial objects. Credit: NASA.